Rheological analysis of creep in hydrogenated amorphous carbon films
نویسندگان
چکیده
We present a nanoindentation study to detect time-dependent deformations in non-polymeric hydrogenated amorphous carbon films. When the bonded hydrogen content increases from 18 to 36 at.%, as measured by Fourier transform infrared spectroscopy, we find that the film becomes less graphitic and softer. Moreover, its hardness shows a larger sensitivity to strain rate and the film with the higher hydrogen content also exhibits a larger and slower creep deformation when subjected to a step-loading experiment. The creep data compares well to the Burgess model and we discuss the influence of Van der Waals bonds on the deformation of the carbon network. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Optical-absorption edge and disorder effects in hydrogenated amorphous diamondlike carbon films.
Optical-absorption edge and disorder effects in hydrogenated amorphous diamondlike carbon films" (1989).
متن کاملInterference fringe-free transmission spectroscopy of amorphous thin films
Articles you may be interested in Photoluminescence properties and crystallization of silicon quantum dots in hydrogenated amorphous Si-rich silicon carbide films Amorphous silicon thin-film transistors with field-effect mobilities of 2 cm 2 / V s for electrons and 0.1 cm 2 / V s for holes Appl. Optical study of disorder and defects in hydrogenated amorphous silicon carbon alloys Appl. Effect o...
متن کاملGrowth mechanism of amorphous hydrogenated carbon
Amorphous hydrogenated carbon (a-C:H) films offer a wide range of applications due to their extraordinary material properties like high hardness, chemical inertness and infrared transparency. The films are usually deposited in low temperature plasmas from a hydrocarbon precursor gas, which is dissociated and ionized in the plasma and radicals and ions impinging onto the surface leading to film ...
متن کاملActivation of platelets adhered on amorphous hydrogenated carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition (PIII-D).
Amorphous carbon films have attracted much attention recently due to their good biocompatibility. Diamond-like carbon (DLC), one form of amorphous carbon that is widely used in many kinds of industries, has been proposed for use in blood contacting medical devices. However, the blood coagulation mechanism on DLC in a biological environment is not well understood. Platelet adhesion and activatio...
متن کاملIntrinsic mechanical properties of ultra-thin amorphous carbon layers
In this work, we extracted the film’s hardness (HF) of ultra-thin diamond-like carbon layers by simultaneously taking into account the tip blunting and the substrate effect. As compared to previous approaches, which did not consider tip blunting, this resulted in marked differences (30–100%) for the HF value of the thinner carbon coatings. We find that the nature of the substrate influences thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006